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ABSTRACT 

In this paper, the application of neural networks for simulation and optimization of the cogeneration 

systems has been presented. CGAM problem, a benchmark in cogeneration systems, is chosen as a case 

study. Thermodynamic model includes precise modeling of the whole plant. For simulation of the steady 

sate behavior, the static neural network is applied. Then using dynamic neural network, plant is optimized 

thermodynamically. Multi- layer feed forward neural networks is chosen as static net and recurrent neural 

networks as dynamic net. The steady state behavior of Excellent CGAM problem is simulated by MFNN. 

Subsequently, it is optimized by dynamic net. Results of static net have excellent agreement with simula-

tor data. Dynamic net shows that in thermodynamic optimization condition, � and pinch point tempera-

ture difference have the lowest value, while CPR reaches a high value. Sensitivity study shows turboma-

chinery efficiencies have the highest effect on the performance of the system in optimum condition. 
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1.Introduction 

Neural network theory is one of the principal-

members ofthe soft computing union that in-

cludes, in addition, fuzzy logic,evolutionary 

computing and probabilistic computing. Within-

this union, the principal contribution of neural 

network theoryis the machinery for learning, 

adaptation and modeling of bothstatic and dy-

namic system and real time optimization. 

First step in optimization is that the behavior of 

systemshould be known. In fact, behavior of sys-

tem is the relationbetween independent variables 

and dependent outputs. Sincethe transient time is 

short, especially for cogeneration systemsbased 

on gas turbine, the optimization is done for 

steady stateof system. The nature of energy sys-

tems is nonlinear so, systemis assumed as black 

box and the relation between decisionvariables 

and outputs is determined using the multi-layer 

feedforward neural networks. In fact, by means 

of this method (theapplication of static net), the 

behavior of system is identifiedand at the follow-

ing dynamic network is applied foroptimization. 

In the optimization of complex energy systems 

(i.e., powerplants), the thermodynamic optimiza-

tion aims to minimize  thethermodynamic ineffi-

ciencies: exergy destruction and exergylosses that 

it obtains by fuel mass flow minimization. 

TheCGAM problem refers 

to a cogeneration plant, which generates30MW 

electricity power and 14 kg/sec of saturated 

steam at 20bars. The structure of the plant is 

shown in fig (1). The plantconsists of a gas tur-
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bine adopted by a recuperator that uses partof the 

thermal energy of exhaust gases and a HRSG 

forproducing steam. It is be notable that assumed 

environment isin ISO condition; subsequently gas 

turbine works in designcondition. The fuel is nat-

ural gas with a lower heating value(LHV) equal 

to 50000 kJ/kg. 

The application of soft computing to model and 

optimization of systems is sharply increasing. 

Shouraki [1] proposed a method for fuzzy model-

ing; which is called as active learning method 

(A.L.M). The basic idea behind A.L.M is looking 

for single input single output subsystems whose 

fuzzy Combination, in a parallel structure, will 

result in the model of multi input single input 

system. It is shown that A.L.M is a universal ap-

proximator [2] and the ability of this method for 

curve fitting, interpolation and extrapolation pre-

sented for a two dimensional nonlinear mapping 

[3]. Assadi [4] used a static neural network to 

model the performance of the simple gas turbine 

and generate the engine performance map, which 

covered a wide range of operational and envi-

ronmental conditions. 

Tsatsaronis and Cziesla [5] used fuzzy logic infe-

rence system as an optimizer engine for iterative 

exergoeconomic optimization of CGAM prob-

lem. The iterative exergoeconomic analysis is 

illustrated elaborative in [6], [7]. 

In this paper, the steady state behavior of 

CGAM problem is modeled by MFNN. For this 

reason, we code the training algorithm of MFNN 

 

Fig.1: Flow diagram of the CGAM problem 

using FORTRAN programming language. using 

this approach, an explicit functional relation for 

fuel mass flow, net power, steam mass and stack 

temperature obtains and optimization procedure 

is done using recurrent neural network, which is 

modeled in MATLAB. 

2. Artifical Neural Networks 

An ANN is an information-processing system 

that has certain performance characteristics in 

common with biological neural networks. ANNs 

have been developed as generalization of mathe-

matical models of human cognition or neural bi-

ology, based on the assumptions that:  

1. Information processing occurs at many 

simple elements called neurons. 

2. Signals are passed between neurons over 

connection links. 

3. Each connection link has an associated 

weight, which, in a typical neural net, 

multiplies the signal transmitted. 

4. Each neuron applies an activation func-

tion (usually nonlinear) to its net input 

(sum of weighted input signals) to de-

termine its output signal. 

An ANN is characterized by (1) its pattern of 

connectionsbetween the neurons (called its archi-

tecture), (2) its method ofdetermining the weights 

on the connections (called its trainingor learning 

algorithm) and (3) its activation function [8]. 

2.1. Static ANN to Find Functional Relation 

In general, static system is a system that its out-

puts are a function of only the current inputs. It is 

suitable to use MFNN as a static net to simulate 

the steady behavior of system. Applications using 

such nets can be found in many fields that in-

volve mapping a given set of inputs to specified 

set of target outputs (so learning is supervised). 

Backpropagation algorithm, which is the optimi-

zation technique based gradient descent, is ap-

plied for training of MFNNs. 

The training of MFNNs by Backpropagation 

algorithm involves three stages: feed forward of 

the input training patterns, the calculation and 

Backpropagation of associated error and the ad-

justment of the weights by means of adaptive 
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algorithm. Because of implementation of BP, for 

training of MFNN the activation function should 

have several important characteristics. It should 

be continuous, differentiable and monotonically 

increasing. Here bipolar sigmoid activation func-

tion is considered which has range of (-1, 1) and 

is defined as 

������ � �	 
 ��
����� � 	     (1) 

In order to explain the BP algorithm in its basic 

form, thelearning of single neuron, which is lo-

cated in the output layerof MFNN, has be shown 

in fig (2).Although a single layer net is severely 

limited in themapping, a MFNN (with one or 

more hidden layers) can learnany continues map-

ping to any arbitrary accuracy. In fact,MFNNs 

are universal approximators. This theorem is na-

medkolmogrov theorem which states that a feed 

forward neuralnetwork with three layers of neu-

rons (input units, hidden unitsand output units) 

can represent any continuous function exact-

ly.More than one hidden layer may be beneficial 

for someapplications, but one hidden layer is suf-

ficient. 

After training, application of the net involves 

only the computations of the feed forward phase. 

This means that after training the MFNN is a 

nonlinear mapping from input space to out 

put space. This mapping can be written as: 

�� �� � ���� ���� ��� � � ��� � ����� ��� � � ��� 
(2) 

 

Fig.2: Implementation of BP algorithm for the single neuron located 

in the output layer 

��, which present functional relation between 

input vector and k’th output, can be given as: 

�� � ������� 
 ���� !"�# 
 �$"$#�
$%� &'(

#%� �#�' 
(3) 

2.2. Dynamic ANN for Optimization 

In general, extra to the depending on current in-

puts, thecurrent output of the system, in dynamic 

systems, depends onprevious outputs. The degree 

of dependency of current outputto the previous 

outputs determines the order of system.Dynamic 

neural units, the basic elements of dynamic neu-

ralnetworks, receive not only external inputs but 

also statefeedback signals from other dynamic 

neural units in thenetwork. From the aspect of 

dynamic systems, a dynamicneural unit forms a 

nonlinear dynamic subsystem that isdescribed by 

a single-variable nonlinear dynamic equation. 

Figure (3) illustrates schematic representation of 

the individualdynamic neural unit. According to 

this figure, a generalmathematical model of the ith 

DNU that is connected to other(n-1) DNUs in an 

n-neuron dynamic network structure isdescribed 

as 

)�$�*�)* � �+$�$�*� 
 �$�,-$ � �-� (4) 

�$�*� � �.�$�*�/� (5) 

 

Fig.3: Schematic representation of the ith DNU 
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It is notable that due to different choices of the 

nonlinear function fi in the general DNU model 

given in (4), (5) and different types of synaptic 

connection that possibly exist among the DNUs, 

different dynamic neural models can be consi-

dered [9]. 

One of the most promising applications of dy-

namic neural networks is in the area different 

classes of optimization problems. The ability of 

analog neuron-like network process simulta-

neously a large number of variables makes it 

possible to find solutions for complex optimiza-

tion problems in almost real time. Different 

classes of optimization problems are discussed 

comprehensively in [10]. Here, regarding our 

case study we consider continuous nonlinear op-

timization with equality constraints, which can be 

state as 

Find 0 � 1��� ��� � � ��23 4 �� which mini-

mizes the scalar function����� ��� � � ��� 
Subject to 5$��� � 6 (6) 

Where x is an n-dimensional vector called the 

decision variables vector, ƒ(x) is objective func-

tion and 78��� represent equality constraints. 

To formulate the optimization problem to fit for 

ANNs the key step is to derive a computational 

energy function (Lyapanov function) so that the 

lowest energy state will correspond to the opti-

mum point. In fact, the stable state for dynamic 

systems corresponds to the minimum surface of 

relevant Lyapanov function of the system.  

 

Fig.4: Block diagram of a network for nonlinear optimization prob-

lems with equality constraints based on augmented Lagrange mul-

tiplier method 

Suitable Lyapanov function can be derive re-

garding objective function and constraints by 

means of different methods. 

At the following suitable recurrent neural net is 

made which has equivalent energy function. Now 

the stable state for this net is equivalent the opti-

mum condition for main problem.  

The augmented Lagrange multiplier method is a 

new class of optimization method, which known 

simply as the multiplier method or as primal-dual 

methods, is proposed by Hestenes and Powell 

[11], [12]. Via this method, the relevant Lyapa-

nov function for optimization problem, which 

stated in (6), can be written as 

9��� �� :� � ���� 
 ;$5$��� 
 :$<$=����
$%�

�
$%�  

(7) 

Where � �� 1��� ��� � � �>2? is the Lagrange 

multipliers and : � � 1:�� :�� � � :�23 is the pe-

nalty parameters with :$ @ 6. If the classical qu-

adratic penalty functions are used, we obtained 

the Lyapanov function 

9��� �� :� � ���� 
 A;$5$��� 
 	�:$5$����B
�
$%�  

(8) 

Therefore, the multiplier method replaces the 

equality constraint optimization problem by the 

unconstraint minimization of the penalized La-

grangian. Now this problem can be converted 

into the problem to solve the system of differen-

tial equations consist of 

)�)* � �CDE9��� ;�� :� )�)* � FDG9��� ;�� :� 
(9) 

With the initial conditions ��6� � ����and 

��6� � ����, where �and � are positive scalar 

variables. Based on the above set ofdifferential 

equations we can construct an appropriate ANN 

asshown in fig (5). Note that Lagrange multip-

liers �8�H� are usedhere as adaptive control para-

meters during the minimizationprocess. 
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3. Case Study 

As mentioned above we choose the CGAM 

cycle as a case study for simulation and optimiza-

tion procedure. The structure of the CGAM cycle 

has been shown in fig (1).  

In this model, compressor pressure ration CPR, 

compressor polytropic efficiency I��J, compres-

sor inlet mass flow K-$L, turbine inlet tempera-

ture MN, turbine polytropic efficiency I��O, the 

turbine blade cooling parameter �, pinch-point 

temperature in HRSG PMQQ and effectiveness 

coefficient of recuperator � are considered as de-

cision variables. Detail modeling of the system, 

parameters definition and other assumptions has 

been presented in [13]. 

It is notable that fuel mass flow, net power, 

steam mass flow and exhaust temperature func-

tional relation, which are vital for optimization 

procedure, cannot be state versus decision va-

riables. 

In this problem, the input is an 8×1 vector 

whose elements are decision variables presented 

in table (1), Also output is a 4×1 vector consist of 

dependent variables which presented in table (3). 

Because of the sensitivity of activation function, 

both Input and output values are normalized be-

tween -1, 1 to train the network. As mentioned 

above, we have used bipolar activation function 

and chosen ten neurons for the hidden layer. It 

should be noted that the number of neurons of the 

hidden layer is chosen by trial and error. 4000 

pairs of inputs and outputs are assumed for train-

ing the net. These 4000 patterns are obtained 

from thermodynamic simulator which explained 

in [13]. As proposed by Hetch-Nielsen [14] net is 

trained by 2800 patterns and tested by the rest. 

Training continues until the learning rate is less 

than 0.0000001. In addition, the initial weights of 

net have been chosen between 0.5 and -0.5 ran-

domly. In this problem, the Backpropagation al-

gorithm is adapted by “Search-Then-Converge” 

strategy [15], [10]. According to this strategy, the 

learning rate is gradually decreasing during the 

learning process. In the first phase of learning 

(search phase) learning rate is constant while it 

must be sufficiently large.  

 

Fig.5: Variation of efficiency and power of  

CGAM with CPR for simulator and MFNN (NN) at =0.2 

Table 1.Decision variables changes range 

Variable Minimum value Maximum value 

CPR 8 15 K-$L 90 140 I �J 0.85 0.92 I �O 0.85 0.91 MN 1233 1533 

� 0.2 0.5 R 0.6 0.9 PMQQ 0 30 

 

 

Table 2. Results for thermodynamic optimization 

Variable Value Variable Value 

CPR 15 R 0.6853 K-$L 107.125 MN 1362.1 I �J 0.8771 � 0.2 I �O 0.91 PMQQ 0 

 

 

Table 3. Values of dependent  

thermodynamic variables for optimum design M� MS MT MU VJWV-$L 
687.664 740.615 764.64 716.64 0.044286 
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In the second phase (convergence phase), the 

learning rate exponentially decreases to zero. Af-

ter training, in fact, the nonlinear functional rela-

tion between decision variables and outputs has 

been determined and we are ready for optimiza-

tion phase. As already stated, the objective func-

tion is fuel mass flow and there are three equality 

constraints. Our prospect from system and physi-

cal limitations impose the constraints that stated 

as 

• For avoiding the acid droplet, the exhaust 

gas temperature of the HRSG Texh 

should not be below 120°C. 

• Net electric power W& net generated is 

30MW. 

• 14 kg/sec saturated steamM&steam , as a 

utility, at 20 bars should be produced. 

Although, it can be inferred from the first limi-

tation, that exhaust temperature must be greater 

than or equal to 120°C, for minimizing the exer-

gy losses it must be decreased as far as possible. 

This means that the exhaust temperature must be 

120°C. therefore we have continuous nonlinear 

optimization problem with three equality con-

straints. The relevant energy function defines as 

9��� �� :� � KX Y���
 A;���X ��� � Z6666�

 	�:�[�X ��� � Z6666[�B
 A;��KX \O]-���� � 	^�

 	�:�[KX \O]-���� � 	^[�B
 A;S�M]E=��� � Z_Z`Z�

 	�:S[M]E=��� � Z_Z`Z[�B 

 (10) 

Where �i are chosen by trial and error and �i 

are determined adaptively as shown in fig (4). 

Now according to (9), (10) we can construct the 

suitable dynamic network looks like fig (5) for 

optimization. 

4. Result And Discussion 

Based on the methodology described in the pre-

vious sections, at first, we present the results of 

estimate the steady state behavior of CGAM 

problem, which is done using static neural net-

work and at the following, the optimization re-

sults have been shown. Finally, the sensitivity 

analysis is done to show the sensitivity of the 

Lyapanov function, which indicates sensitivity of 

system according to decision variables changes 

around the optimum points. 

4.1. Thermodynamic Simulation Validation 

In this section, the accuracy of static neural 

network as a CGAM simulator is presented. In 

order to test accuracy of gas turbine simulator, 

some of the gas turbine performance behavior 

graphs for CGAM simulator and static neural 

network will be compared here.  

Figures (5) and (6) show that for all TITs, CPRs 

(9-14) and with different blade cooling technolo-

gies, MFNN can predict CGAM behavior with 

little error. Maximum error is less than 1 % for 

all cases. 

As can be seen, with variation in blade cooling 

technology(�), power and efficiency decrease 

significantly due to increasein coolant mass flow. 

Both simulator and MFNN predict thistrend with 

little differences. 

In figure (7) effect of change in value of � on 

coolant mass flow is presented for TIT=1400 K. 

both models show that with increase in � coolant 

mass flow increase and this increase is higher for 

high CPR. Fig (8) show that decrease in � in-

crease gas turbine exhaust temperature and more 

energy will be transferred to recuperator and heat 

recovery boiler. These trends are predicted with 

two models simultaneously. 

From the above results, we can conclude that 

the MFNN can predict behavior of CGAM with 

good accuracy. Therefore the functional relations, 

which are produced by static net, can be used in 

dynamic neural net for optimization. 

4.2. Optimization 

Using proper dynamic neural net for the CGAM 

problem, we can obtain optimum values for deci-

sion variables. As mentioned above the net is 

going to reach its minimum Lyapanov function 
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Fig.6: Variation of efficiency and power of CGAM with CPR for 

simulator and MFNN (NN) at =0.4 

 

 

Fig.7: Variation of coolant mass flow versus CPR for simulator and 

MFNN (NN) at =0.4, 0.2 

 

 

Fig.8: Variation of turbine exhaust temperature versus CPR for 

simulator and MFNN (NN) at =0.4, 0.2 

 

value. This condition is equivalent with the opti-

mum values for decision variables. The final val-

ues for decision variables are shown in table (2) 

and relevant trajectories are drowning at the fol-

lowing. 

Table (3) shows the dependent thermodynamic 

variables values in optimum condition. In ther-

modynamic optimization, minimizing fuel mass 

flow is our object; therefore inlet air mass flow to 

compressor must decrease to minimize fuel con-

sumption. Also, pinch point temperature differ-

ence must reach zero to minimize exergy destruc-

tion in HRSG. As described in [16] the stack 

temperature must reach its minimum value (fig 

(20)) to minimize exergy loss so it needs the inlet 

temperature of gas entering HRSG increase. 

More comprehensive discussions are presented in 

[16]. The results for thermodynamic optimization 

are reaching high CPR (to minimize fuel mass 

flow), low TIT, high compressor and turbine po-

lytropic efficiency and high blade cooling tech-

nology (the lowest possible value for �). The 

computer simulations of these variables are 

shown in figures (9)-(17). In addition figures 

(18), (19), (20) show the error of the outputs from 

their desired values. As be shown the steady state 

error for desired outputs is zero. As will be de-

scribed in sensitivity analysis, compressor and 

turbine polytropic efficiency have the highest 

effect on gas turbine cycle performance. 

4.3. Sensitivity Analysis 

After the optimization procedure, in order to in-

vestigate the effective variables on optimum per-

formance, 5 % change around the optimum point 

values in decision variables is done, and then us-

ing MFNN, the sensitivity analysis of Lyapanov 

function is plotted. 

Lyapanov function consists of mass flow rate 

and desired outputs of plants, so its variation ac-

cording to decision variables helps to understand 

general behavior of the plant around optimum 

condition. The sensitivity of Lyapanov function 

in thermodynamic optimum condition is shown 

in fig (21), (22). Fig (21) shows that the most 

important decision variable is compressor poly-

tropic efficiency. This result is similar to results 

presented in [17]. As shown, reducing 
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Fig.9: Computer simulated trajectory 

 forpressure ratio 

Fig.12: Computer simulated trajectory for turbine  

polytropic efficiency 

 

Fig.10: Computer simulated trajectory for  

air mass flow 

 

Fig.13: Computer simulated trajectory for  

Recuperator effectiveness 

 

Fig.11: Computer simulated trajectory for  

compressor polytropic efficiency 
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Fig.15: Computer simulated trajectory for 

 blade cooling parameter 

 

Fig.18: Computer simulated trajectory for  

error in desired power 

Fig.16: Computer simulated trajectory for pinch- 

 point temperature difference 

 

Fig.19: Computer simulated trajectory for error in  

desired steam mass flow 

 

Fig.17: Computer simulated trajectory 

 for fuel mass flow 

 

Fig.20: Computer simulated trajectory for  

error in stack temperature 

 

0 0.5 1 1.5

0.2

0.21

0.22

0.23

0.24

0.25

Time(sec)

S
ig

m
a

0 0.2 0.4 0.6 0.8 1 1.2
-15

-10

-5

0

5

10

15

20

time(sec)

N
e
t 
p
o
w

e
r-

3
0
0
0
0

0 0.5 1 1.5
0

1

2

3

4

5

6

7

Time(sec)

P
in

c
h

-p
o

in
t 
te

m
p

e
ra

tu
re

 d
if
fe

re
n

c
e

0 0.5 1 1.5

1.5

1.55

1.6

1.65

1.7

Time(sec)

F
u

e
l 
m

a
s
s
 f
lo

w



Static and Dynamic …, Roozbeh Zomorodian, Mohsen Rezasoltani and Mohammad Bagher Ghofrani 

60 

 

Fig.21: Effect of change in decision variables on Lyapanov 

function around the thermodynamic optimum condition 

 

Fig.22: Effect of change in decision variables on Lyapanov 

function around the thermodynamic optimum condition 

 

polytropic efficiency changes optimum condition 

more than increase its value. Turbine polytropic 

efficiency is the second effective variable on 

Lyapanov function. TIT and mair cause to similar 

trend and quantities. Other variables like �, � and 

CPR have similar effect. These behaviors are all 

in accordance with [16]. 

5. Conclusions 

In this paper, we present the application of 

neural networks for simulation and optimization 

of cogeneration systems. At the following, the 

thermodynamic optimum design of CGAM prob-

lem is presented. Modifications in both of the 

thermodynamic model of the cycle and method of 

optimization are done. The main findings of the 

paper are:  

• Results of MFNN shows that this type of 

neural networks are suitable tools for 

nonlinear and multi-dimensional model-

ing 

• Dynamic neural network can be used ef-

fectively for solving engineering prob-

lems, which formulated as optimization 

problem. The basic idea behind of using 

dynamic neural network for optimization 

problem is that any natural dynamic sys-

tem will go to its minimum values of 

energy (minimum value of Lyapanov 

function). 

• In thermodynamic optimization, the ob-

ject is to minimize fuel mass flow,  

which minimizes exergy losses and de-

structions. Therefore, CPR has high val-

ue; TIT, blade cooling technology and in-

let air mass flow have low value. �Tpp is 

zero and � has a moderate value. 

• Turbomachinary efficiency (especially 

compressor polytropic efficiency) is the 

most important variable that affects de-

sign condition of the whole plant. TIT 

and inlet air mass flow have lower influ-

ence. 

6. Nomenclature 

Sig Bipolar activation function 

f Fuel air ratio (mass basis) 

ISO 
ISO condition (15°C, 1.01325 

bar, 60% relative humidity) 

T Temperature Difference 

V specific volume �$ activation function of i’th neuron M$ weight matrix of neuron 

Abbreviations  

GT Gas Turbine 

HRSG Heat Recovery Steam Generator 

MFFN 
Multi layer feed forward neur-

al network 

ANN Artificial Neural Network 

LHV Lower Heating Value (kJ/kg) 

CGAM 
C. Frangopoulos, G. Tsatsaronis, 

A. Valero, M.Spakovsky 

BP Back Propagation 

DNU Dynamic Neural Unit 

m mass flow rate (kg/s) 
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P Pressure (bar) 

T Temperature (ºK) 

CPR pressure ratio 

e error signal 

d desired output 

Greek symbols  

 
Polytropic Efficiency (c: com-

pressor, t: turbine) 

 Learning rate 

 Heat exchanger efficiency 

 
Non dimensional parameter 

(blade cooling) 

x 
Input training vector 

x=[x1,x2,...,xn] a�b Bias on output unit k "�c Bias on hidden unit j 

Subscribe  

Exh Exhaust 

G Gas 

PP Pinch Point 
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