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ABSTRACT 

In the present study the adiabatic temperature of gaseous fuels were calculated and the influence of 

effective parameters of flame temperature was discussed. Firstly, a new computational program named 

FTC (Flame Temperature Calculations) was prepared to calculate the adiabatic flame temperature and 

then the effect of initial temperatures of combustion air and fuel, excess air content and oxygen 

enrichment on these temperatures was evaluated. The obtained results show that the oxygen enrichment 

influences the adiabatic temperature, remarkably. Also, FTC is able to estimate the concentration of 

combustion components such as: carbon dioxide, steam, oxygen, nitrogen, carbon mono oxide and 

nitrogen oxide. Finally artificial neural networks were presented for estimation of adiabatic temperature. 

The proper neural networks were trained and tested using obtained data by FTC. The neural network 

prediction results were compared with those calculated by thermodynamic and chemical equilibrium - 

based method. It was shown that trained neural networks can provide the adiabatic temperature with 

reliable accuracy over a wide range of operating conditions. 
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1.INTRODUCTION 

In any combustion process flame temperature 

is an important property that controls the rate of 

chemical reactions and has a specific effect on 

the designing of combustion equipment [1]. This 

paper presents the new method developed for 

adiabatic and real flame temperature calculations. 

At first, adiabatic flame temperature was 

calculated based on adiabatic combustion 

process. Then a new approximation approach for 

adiabatic flame temperatures estimations using 

Artificial Neural Network (ANN) is presented  . 

Artificial neural network is one of the most 

rapidly expanding fields of research and 

application, and has evolved into a powerful tool 

in a wide variety of disciplines [2, 3]. There has 

been considerable interest in recent years in the  

 

use of neural networks for the modeling and 

control of combustion processes due to their 

ability to represent non-linear systems and their 

self-learning capabilities [4]. A preliminary 

investigation of neural networks to flame 

temperature prediction has been conducted and 

encouraging results were achieved. However, the 

trained network model was applicable for only 

three hydrocarbon fuels and the prediction 

accuracy needs to be further improved [5]. In this 

paper, further investigation of the potential and 

performance of neural networks for flame 

temperature prediction are reported. The training 

process of a number of neural network models 

for a wider range of applicable fuels and 

operating conditions are described and the flame 

temperature prediction accuracy by trained 

network models is evaluated. It has been shown 
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that neural networks can provide the flame 

temperature prediction with a satisfactory level of 

accuracy for some of fuels i.e. ethane, methane, 

propane and reforming gas. 

2. PART I: FLAME TEMPERATURE CALCULATIONS 

Flame temperature was calculated based on 

adiabatic combustion process. This means that if 

a fuel-air mixture burns adiabatically at constant 

pressure, the absolute enthalpy of reactants at the 

initial state (say, T=298.15K, P=1atm) equals the 

absolute enthalpy of products at the final state 

and temperature was calculated in the trial and 

error method [1].  
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Where Hf  is heat of formation in 298K for each 

pieces and Hj(T) is the enthalpy of components in 

T that is presented in reference [3]. T0 is 

reference temperature and Ti is initial temperature 

of reactants. N and Cp calculated by: 
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 and b, c and d calculated 

in the same method. a, b, c and d are the 

coefficients for heat capacity calculations [3]. x is 

the mole fraction of product i in total products. 

At typical flame temperatures, the products 

dissociate and the mixture comprises many 

species. Dissociation of combustion products in 

flame led to lose of heat from flam. The 

researchers considered some important 

equilibrium reactions: dissociation of CO2, 

dissociation of H2O, CO2 and H2O equilibrium 

reaction and NO formation reactions. Flame 

temperature calculations are done with or without 

considering these reactions. 
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In this program the researchers  were able to 

calculate NO produced from combustion 

processes with NO formation reactions. Equation 

constants in the above reactions were calculated 

from thermodynamic methods. For example for 

CO2 dissociation: 
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Where Hf and 
~
s0

were found from references for 

each component [6]. On the other hand for the 

CO2 dissociation: 
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Where the P for each component is given by: 
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So the dissociation rate of reaction, xCO2, is 

found. With the same method we found, x, for 

equations 5, 7 and NO formation equations. 

2. PART II: ARTIFICIAL NEURAL NETWORK 

The second step of this study consists of 

designing neural networks for estimation of 

flame temperature. We trained some different 

networks for different type of fuels.  Back 

propagation networks are used in a large number 

of working applications as they tend to generalize 

well. In BP networks, the number of hidden 

neurons determines how well a problem can be 

learned. If too many are used, the network will 
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tend to try to memorize the problem, and thus not 

generalize well later. If too few are used, the 

network will generalize well but may not have 

enough ‘power’ to learn the patterns well. 

Getting the right number of hidden neurons is a 

matter of trial and error, since there is no science 

to it. BP networks are known for their ability to 

generalize well on a wide variety of problems. 

BP networks are a supervised type of networks, 

i.e. trained with both inputs and outputs. In this 

work the researchers used this type of training 

algorithm. A trained net work can give us the 

flame temperature for different conditions of 

significant fuel combustion with a satisfactory 

level of accuracy. 

3.PART I: RESULTS FROM FTC PROGRAM 

There are many parameters that affected on 

flame temperature. Figures 1 to 6 illustrate effect 

of variables on the adiabatic flame temperatures. 

Fig.1 illustrates the effect of fuel temperature on 

flame temperature in different amounts of excess 

air. It shows that fuel temperature increasing 

even to 1000K has no great effect on flame 

temperature. 

 

 
Fig.1:Effect of initial temperature of fuel on the 

adiabatic flame temperature 

As we know both O2 concentration and 

preheating of combustion air cause to increase 

flame temperature.  Fig.2 shows that an increase 

in O2 concentration will further enhance the 

adiabatic flame temperature than preheating air. 

It shows that the effect of increasing O2 

concentration from 21% in normal air to 40% on 

flame temperature equals preheating combustion 

air up to 1400K. 

 

 
Fig.2: Effect of excess air on the adiabatic flame 

temperature 

Just as Fig.3 shows, the best gas feed 

composition of the modified O2 combustion was 

N2/O2≈1.5 or 40%O2 -60%N2 and this result 

agreed with Cheng Chen and Jian-Sheng Huang's 

studies[7].  
Fig.3:Best ratio of N2/O2 is 1.5 

On the other hand an increase in O2 

concentration led to increasing NO concentration 

and this is an undesirable matter (Fig. 4). Effect 

of initial air temperature on flame length for 

some fuels is shown in Fig.5. It is observed that 

with the increase in the air temperature, there is 

no considerable effect on flame length as if air 

temperature increasing 700K, the flame length 

decrease from 1.67 to 1.66m that is not so great 

value.  

Fig.6 illustrates the effect of O2 concentration 

in combustion air for reforming gas1 flame. 

                                                 
 
1 . CH4=0.224, C2H6=0.276, C3H8=0.224, C4H10=0.072, 

C5H12=0.074, C2H4=0.03, H2=0.049 
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Considering Fig.6, we find that decreasing in 

N2/O2 ratio from 3.76 to 2.5, flame length 

decrease 25%. 

Fig.4: Increasing NO concentration with increasing 

adiabatic flame temperature 

Fig.5: Effect of air temperature on flame length, 

fuel=reforming 
 

Fig.6:Effect of N2/O2 ratio on flame length, 

fuel=reforming gas 
 

4. ARTIFICIAL NEURAL NETWORK RESULTS 

In the current study, the following four neural 

network models were built and trained for the 

following different cases: 

Model 1: to predict the adiabatic flame 

temperature of a single fuel. 

Model 2: to predict the adiabatic flame 

temperature of communicate fuels. 

Model 1: Methane (CH4) fuel was selected for 

the training and evaluation of Model 1. Four 

variables, Initial temperature of air Tai, initial 

temperature of fuel Ti , percentage of excess air 

A1 and the ratio of N2/O2 in combustion air A2, 

were considered as input data. The training data 

of each input variable were chosen according to 

table 1: 

A total of 750 rows of input data together with 

their corresponding desired outputs were used as 

the training data set. A feed-forward network 

with two hidden layers was used to produce the 

network Model 1. Each hidden layer has 3 and 15 

neurons, respectively (i.e., the network size is 4–

3–15–1). The logistic function was used for all 

layers. The error is defined as |(t/-t)/t|, where t is 

calculated by the FTC code developed by author 

in this study  and t/ is the predicted temperature. 

The maximum error for training data was 4.8×10-

3. Fig.7 the error of network1 trained for model1. 
 

Fig.7: Errors of model 1 for training data 
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Table 1: input variable for model1 

 

To evaluate the accuracy of neural network1 

predictions, the following two test data sets 

corresponding to different operating conditions 

were arbitrarily selected for the result 

comparison. Tabel1 and table 2 show these data 

sets. 

As Fig.8 A and B show, the average errors range 

with the two test data sets is from 0.1 to 0.28%, 

and the maximum error is 0.6%. 

Model 2: the wide range of fuels combustion 

condition was trained in model2. Initial 

temperature of air Tai, initial temperature of fuel 

Ti, percentage of excess air A1 and the ratio of 

N2/O2 in combustion air A2 and volume 

percentage of each fuel in communicated fuel 

were considered as input data. The training data 

of each input variable were chosen according to 

table 4: 

  

 

 

 

 

 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8:Prediction errors of Model 1 for two different 

data tests under various operating conditions, A. data 

test1, B. data test2 

Table 2: input data test1 for model 

 
Table 3: input data test2 for model 

 
 

step  to  From  symbol  Variable 
170 1200 213 Tii Initial air temperature, K  

200 1200 221 Ti Initial fuel temperature, K 
0.8 3.5 0 A1 Excess air 

0.75 3.76 0 A2 The ratio of N2/O2 in air 

step  to   From      Symbol   Variable 

75  1200  200       Tai   Initial air temperature, K  
Constant value 298 Ti Initial fuel temperature, K 

0.75 2 0 A1 Excess air 
0.55 3.76 0.6 A2 The ratio of N2/O2 in air 

Step  to  From   Symbol   Variable 

75  1200  200   Tai   Initial air temperature, K  
Constant value 298 Ti Initial fuel temperature,K 
Constant value 0.05 A1 Excess air 
Constant value 3.76 A2 The ratio of N2/O2 in air 

A 

B 
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Table 4: Input variable for model 2 

 
 

Table 5: Input variable for model2 

 

A total of 18720 rows of input data together 

with their corresponding desired outputs were 

used as the training data set. A feed-forward 

network with three hidden layers was used to 

produce the network Model 2. Each hidden layer 

has 5, 15 and 8 neurons, respectively (i.e., the 

network size is 14–5–15-8–1). The logistic 

function was used for all layers.  

The maximum error for training data was 

2.55×10-2. Fig.9 shows the error of network 2 

trained for model 2. 

Two test data sets corresponding to different 

fuels were arbitrarily selected for the result  

 

 

comparison. Data test 1 was reforming gas with 

following component: CH4=0.224, C2H6=0.276, 

C3H8=0.224, C4H10=0.072, C5H12=0.074, 

C2H4=0.03, C3H6=0.0, C4H8=0.0, C2H2=0.0, 

H2=0.049 and operating conditions according to 

table 5. Data test 2 was Refinery gas with 

following component: CH4=0.36, C2H6=0.182, 

C3H8=0.197, C4H10=0.019, C5H12=0.0, 

C2H4=0.054, C3H6=0.0, C4H8=0.075, C2H2=0.0, 

H2=0.033 and operating conditions same as data 

test1.  

As Fig.10 A and B show, the average errors 

range with the two test data sets from 1.01 to 

1.08%, and the maximum error is 1.32%.  

 

Fig.9:Errors of model 2 for training data

step  to  from  Symbol  Variable 
170 1200 213 Tii Initial air temperature, K  
200 1200 221 Ti Initial fuel temperature, K 
0.8 3.5 0 A1 Excess air 

0.75 3.76 0 A2 The ratio of N2/O2 in air 
0.5 1 0 F1 Methane volume  percent 

0.13 1 0 F2 Ethane volume  percent 

0.21 0.5 0 F3 Propane volume  percent 

0.041 0.1 0 F4 Butane volume  percent 
0.041 0.1 0 F5 Pentane volume  percent 

0. 1 0.2 0 F6 Ethene volume  percent 

0.041 0.1 0 F7 Propene volume  percent 
0.15 0.2 0 F8 Butene volume  percent 

0.01 0.02 0 F9 Acetylene volume  percent 

0.041 0.1 0 F10 Hydrogen volume  percent 

step  to  From   Symbol   Variable 

75  1200  200   Tai   Initial air temperature, K 

Constant value 298 Ti Initial fuel temperature, K 
Constant value 0.05 A1 Excess air 
Constant value 3.76 A2 The ratio of N2/O2 in air 

A 
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Fig.10:Prediction errors of Model 2 for two different 

data tests under various operating conditions, A. data 

test1, B. data test2 

5.CONCLUSION 

There are some different parameters that 

effected on flame temperature such as initial 

temperature of fuel, initial temperature of 

combustion air, amount of excess air and the 

ratio of N2 per O2 in air that used for fuel 

complete combustion. The effect of each of 

these parameters were investigated with a new 

computational program named FTC (Flame 

Temperature Calculations) was prepared in 

MATLAB to calculate the flame temperature. 

Just as results show, the fuel initial temperature  

 

 

 

 

 

has not large effect on flame temperature. The 

initial temperature of air increased the flame 

temperature but we found that the ratio of N2 per 

O2 has an important effect on the flame 

temperature. Investigated parameters illustrated 

that O2 concentration has an important rule for 

increasing adiabatic flame temperature. 

Optimum O2 concentration was 40%. As a result 

of this program we find that if the minimum 

flame length with maximum temperature were 

desired, modified O2 combustion is a good 

method than preheating air combustion. Use of 

developed air for combustion of fuels led to save 

energy in many industries such as cement 

industry. 

In this study, an artificial neural network is used 

for prediction of flame temperature. This paper 

has demonstrated the usefulness and 

effectiveness of applying neural networks in 

modeling combustion reactions for gaseous 

fuels. Neural networks usually used for complex 

issues such as problems which have complex 

equations usually driven from experimental data. 

In combustion problems there are many of these 

types of equations. Each of the equations has 

regression errors. Furthermore they have errors 

resulting from calculations. Errors will be larger 

if the number of experimental equations 

increased or the calculations are more 

complicated. Maximum error for two trained 

neural network was 1.3%. This degree of 

accuracy shows that the proposed ANN can be 

used to obtain the flame temperature very fast 

and exactly. Trained neural networks can 

provide the adiabatic temperature with reliable 

accuracy over a wide range of operating 

conditions. 
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